Scaling of capillary trapping in unstable two-phase flow: Application to CO2 sequestration in deep saline aquifers

نویسندگان

  • Luis Cueto-Felgueroso
  • Michael L. Szulczewski
  • Ruben Juanes
چکیده

The effect of flow instabilities on capillary trapping mechanisms is a major source of uncertainty in CO2 sequestration in deep saline aquifers. Standard macroscopic models of multiphase flow in porous media are unable to explain and quantitatively predict the onset and structure of viscous-unstable flows, such as the displacement of brine by the injected CO2. We present the first step of a research effort aimed at the experimental characterization and mathematical (continuum) modeling of such flows. Existing continuum models of multiphase flow are unable to explain why preferential flow (fingering) occurs during infiltration into homogeneous, dry soil. We present a macroscopic model that reproduces the experimentally observed features of fingered flows. The proposed model is derived using a phase-field methodology and does not introduce new independent parameters. From a linear stability analysis, we predict that finger velocity and finger width both increase with infiltration rate, and the predictions are in quantitative agreement with experiments. © 2008 Elsevier Ltd. All rights reserved

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Residual trapping, solubility trapping and capillary pinning complement each other to limit CO2 migration in deep saline aquifers

We derive a theoretical model for the post-injection migration of a CO2 gravity current in a confined, sloping aquifer under the influence of residual trapping, solubility trapping, and capillary pinning. The resulting model consists of two coupled partial differential equations that describe the local thickness of the buoyant CO2 current and the thickness of the mound of brine saturated with d...

متن کامل

A mathematical model of the footprint of the CO[subscript 2] plume during and after injection in deep saline aquifer systems

We present a sharp-interface mathematical model of CO2 migration in saline aquifers, which accounts for gravity override, capillary trapping, natural groundwater flow, and the shape of the plume during the injection period. The model leads to a nonlinear advection–diffusion equation, where the diffusive term is due to buoyancy forces, not physical diffusion. For the case of interest in geologic...

متن کامل

The Footprint of the CO2 Plume during Carbon Dioxide Storage in Saline Aquifers: Storage Efficiency for Capillary Trapping at the Basin Scale

We study a sharp-interface mathematical model of CO2 migration in deep saline aquifers, which accounts for gravity override, capillary trapping, natural groundwater flow, and the shape of the plume during the injection period. The model leads to a nonlinear advection–diffusion equation, where the diffusive term is due to buoyancy forces, not physical diffusion. For the case of interest in geolo...

متن کامل

Scaling Behavior of Convective Mixing, with Application to Geological Storage of CO2

CO2 storage in deep saline aquifers is considered a possible option for mitigation of greenhouse gas emissions from anthropogenic sources. Understanding of the underlying mechanisms, such as convective mixing, that affect the long-term fate of the injected CO2 in deep saline aquifers, is of prime importance. We present scaling analysis of the convective mixing of CO2 in saline aquifers based on...

متن کامل

Impact of relative permeability hysteresis on geological CO2 storage

[1] Relative permeabilities are the key descriptors in classical formulations of multiphase flow in porous media. Experimental evidence and an analysis of pore-scale physics demonstrate conclusively that relative permeabilities are not single functions of fluid saturations and that they display strong hysteresis effects. In this paper, we evaluate the relevance of relative permeability hysteres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009